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Abstract—A constrained extremum principle for the elastostatics of cable networks is formulated.
A convex, non-differentiable functional involving only static variables is shown to attain its
minimum on a convex set, in correspondence of the solution of the problem. Taking into account
slackening of cables, existence and uniqueness are proved for the solution. Finite element models
can be developed on the grounds of the theory, as shown in some examples.

1. INTRODUCTION

Displacement approaches to problems of cable networks are very popular in the literature.
Algebraic formulations have been developed with reference to problems of networks
submitted to lumped loads (suspensionroofs)[1-7]. Analytical formulations have been
given to account for distributed loads[8-13], and solving dynamic problems[14-16].
Incremental methods of elastic, as well as elastoplastic analysis have been proposed, but
the stress-unilateral behaviour of the cables has been taken into account explicitly only
sporadically (see, e.g. Ref. [17]).

As a matter of fact, statics of cables and cable networks are characterized both by
geometrical (large displacements) and mechanical (stress-unilateral behaviour) nonlineari-
ties. In this context, the author has proposed a constrained, stationary formulation for the
statics of elastic networks submitted to conservative (but generic) loads, from which
two complementary, constrained extremum formulations have been shown to stem,
corresponding to the usual principles of the total minimum potential energy and
complementary energy, this one being expressed in terms of both static and geometric
variables[18].

In this paper, the latter formulation is reconsidered (Section 2), and a new constrained
minimum problem for a convex functional in the static variables only is deduced. Existence
and uniqueness for the solution of this problem on the convex set of the admissible (i.e.
tensile) tractions are proved (Section 3). The functional is recognized to be non-Gateaux
differentiable at the point where it attains its minimum, if slackening of cables occurs. The
relevant minimum conditions, taking into account slackening, are then deduced. Such
conditions coincide with the ones achievable via the usual variational procedure if the
cables are all in tension at the equilibrium configuration, and they are the compatibility
relationships for the network, in the framework of the assumed formulation (Section 4).

The theory is available for developing finite element equilibrium approaches, which
seem particularly convenient in the analysis of cable systems, as shown in some simple
applications presented at the end of the paper.

2. GENERAL REMARKS

The cable is considered as a unidimensional solid in R®. Any configuration C of the
cable is described by the coordinates of its points in an orthogonal Cartesian reference
frame (0, x;; i = 1,2,3). A reference configuration C° is assumed for the cable, where s is
the curvilinear abscissa along C°. The cable is unstrained in this configuration, and its

t+A preliminary version of this paper was presented at the Seventh Congress AIMETA, held in Trieste,
2-5 October 1984.
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length is L. The points of C are related to C° by assuming that their coordinates are
expressed through s, i.e. by letting x; = x{s), s€(0, L). The end points of the cable have
coordinates X? = x{0), XL = x/(L).

The strain at a point on the cable is defined in terms of relative elongation byt

_ ds — ds
ds

= (xi/sxi/s)m -1 (1)

where d5 is the length of the (infinitesimal) cable element in C.

The cable is submitted to a distributed, conservative load, whose components g(s) are
forces per unit of undeformed length. The forces F? and FF act at the ends of the cable,
s =0 and L, respectively. The traction in the Lagrangean sense (i.e. referred to the
dimension of the unstrained cable element) along the cable is denoted by T(s). Traction T
is related to the actual traction T* by T= T*/(1 + n), and T is assumed positive if the
cable is stretched.

Equilibrium is expressed by the equations

(Txys)s +4i=0,  se(0,L) 2
(Txyo = —F7,  s=0; (Txy)=F;, s=L. 3

If the coordinates of any of the cable ends are prescribed, i.e. this end is restrained,
eqns (3) define the relevant restraint forces.
The strain conjugated with traction T is defined by

1
A= i(xi/:xi/s -1 4)

and strains n and A are related as follows
n={(1+2 -1 (5)

As the cable can bear only tensile tractions, the elastic part of strain 4, denoted by ¢,
must be nonnegative. Taking into account def. (4), this unilateral behaviour is described
by the compatibility relationships

_ 1 -
g=&— E(xi/sxi/s - 1) +E2 0, ez 0, (8,§> = 0’ SE(Oa L) (6)

where £ denotes a possible initial strain (¢ > —1/2).
Strain ¢ and traction T are related by the elastic constitutive law

_4¢(m) -
€= a7 g0)=0 (7a,b)

where the strain energy density G(T') is admitted to be a continuous, strictly convex function
defined for T > 0. This implies

§T) >0, vT>0. (7Tc)

t The derivative of a (differentiable) function f(s) with respect to s is denoted by f,,. Repeated subscripts
mean summation over the range 1, 2, 3, {,-> means scalar product between two square integrable functions.
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Moreover, the following assumption is stipulated
«>0, VT>0. (7d)

Taking into account the constitutive law, relations (6) are transformed into the
elastokinematic relationships[ 18]

g=g%—%(x,.,,x,.,,—1)+g>0, T20, (Tg>=0, se(L) )

Consider now a network of n cables and [ free nodes. The set of such nodes is denoted
by K. The unstrained length of the jth cable, j =1, 2,...,n, is denoted by L/, and the
(unknown) coordinates of the kth node, k = 1, 2,...,1, are denoted by X%, i=1,2, 3. The
network is restrained at further m nodes, whose (prescribed) coordinates are denoted by
Xt h=1,2,...,m,i=1,2, 3. The set of such nodes is denoted by H. A distributed load
of components g{ acts on cable j, and a concentrated load of components Qf acts on node
k. If the jth cable is connected to a free node ke K by its initial, s = 0 (terminal, s = L),
end, index j is entered into the set I* (E*). If the same node is restrained, index j of the
cable is entered into the set I* (E®).

Equilibrium and compatibility (i.e. continuity) conditions at the kth node read

YEY 4+ L FY =0, k=12, ©)
jel* jeE
x{0) = X!, jely xiL)=X} jeE-. (10)

The end forces on a cable restrained at node h are given by eqns (3), while the
coordinates of the end points

Oy =Xt jel" x{L)=X!, jeE (11

should be prescribed.
Relationships (2), (3), (8)—(11) rule the problem of the equilibrium of an elastic network.
A variational formulation of the same problem lies on the stationary (minimum) of the
functional[ 18]
L

OT,x) = Z,{ f [G + 3 TG+ 1) + TE]ds}
(1]

- ZI{X:'[ Z (Txi/s)l_ - z (Txl’/s)O]} (12)

JjeE* je*

on the set of solutions of the equilibrium equations (2), (3), (9), which fulfil the admissibility
condition T > 0 on tractions. If the variables F? and Fr are eliminated between eqns (3)
and (9), the above problem takes the form

min (T, x;) (13a)

+Index j denoting functions or parameters for the jth cable will be omitted from now on, unless a
misunderstanding is possible.
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subjected to

[(Txyehs + ) =0, j=1,2,....n (13b)
Y (Txipdo — ¥ (Tx,)p + Q4 =0, k=121 (13¢)
Jel* jeE*

T/ 20, j=12,...,n (13d)

3. A PRINCIPLE OF MINIMUM FOR TRACTIONS

An extremum formulation in the static variables alone can be obtained from problem
(13) above.
Equations (13b) yield for the jth cable

Tx;s = —[R4s) + F?3, R{s) = J g{t)de {14a,b)

[

then

(Txiys)o = — F7, (Txys), = —[RAL) + F]. (14¢,d)

Equation (14c) defines F? as the ith component of the force acting at the initial end of

the cable. Assume, as natural, that load g; is represented by a bounded, generally continuous
function of the abscissa s. Then, R(s) is a bounded, absolutely continuous function on the

interval (0, L).
For each T 2 0, define the sets

w' = {s|T(s) >0} and w°= {s|T(s) = 0}, wruw®=(0,L) (15a,b)

For any two given (T, F?), eqn (14a) defines x;; only if sew™*
Xiys = —}f[R‘(s)+F?], sew”. (16)

On the other hand, any (no) finite value for x;; can fulfil eqn (14a), if F{ is such that
R{(s) + F? = 0 (R{s) + F? # 0), se w°. Let, according to eqn (14a)

A®) = 3 Txyors = — 5 (R + Folx,s

and, for the above considerations, define

A(s) = 2—1-T[R,{s) + FOJ[Rfs) + F?],  Vsew"

A)=0,  sewd,  s[Rds)+ FOI[R{s) + F1 =0
As)= o0, sew®  s:[R{s)+ FYJ[R{s) + F?] #0.

Then, taking into account eqns (14c) and (14d), functional @ takes the form

L
[oiT) + @oAT, F)] ds} + F(F)) (17a)

0
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where
©4(T)=G(T) + TG + é) (17b)

9T, F)) = ZLT[R.{S) + F1[R(s)+ F(], VT>0 (17¢)

GER L DY |} e

jeI* JeE

with the specifications

¢, =0, if [R{s) + FYJ[R{s) + F{1=0, VT20 (17¢)
02 =00, if[R{s)+ FPJ[RAs) + FO]#£0, T=0 (176)
&, =0, if3ie,¢L,(0,L) (17g)

and stipulating that ¢, ¢ L,(0, L), if def. (17f) is fulfilled on a set having positive measure.
It is worth noting that defs (17f) and (17g), taking into account (14b), cause functional
&, to assume infinite value for any T(s) such that the traction is zero on a loaded, finite
part of a cable (g(s) # 0, sew°).
Taking into account eqns (14c) and (14d), the equilibrium conditions are rewritten as

YFE)- Y F)=0'+ T R(L), k=1,2..,1 (18)

jel* JjeEX JjeEk

and they become a system of 3! linear equations in the 3n variables (FYY,j =1, 2,...,n,
n > l. Let the network be restrained, i.e. one at least of its nodes is fixed. Then, any free
node is connected with a/the restrained node directly or else through a sequence of cables.
As a consequence, for any given set of nodal loads at least one subset of ! cables, ie. a
subnetwork, can be found, which is able to carry the loads. In other words, equilibrium is
possible for every system of nodal loads, hence the equilibrium equations are linearly
independent, and the coefficient matrix of system (18) is a full rank matrix.
Problem (13) can be now rewritten in terms of static variables only

min ®, (19a)
YFY-Y (F)=0"+ T R{L), k=1,2,...1 (19b)
Jel* jeE* jeE

T>0 (19¢)

where @, is defined by relationships (17).

Relationships (17) define the functional only for T = 0, as function G is defined only
for non-negative values of T. However, this fact does not cause any loss of generality, as
constraint (19¢) rules out negativity for T.

Assume T/ as belonging to L,(0,L’), and assume (F?Y as a vector of R>. Then
functional ®(T, F?) is defined[19] on the space

. L 12
& =[1ILOL)xRY, |l= {ZJI:J T?ds + F?F?:l}
j=1

0
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which is a Hilbert space, hence reflexive. Constraints {19¢) define a convex, strongly closed
set W of &. Equations {(19b) define a not empty linear manifold #. Hence the set

Q=WnY, Py

i.e. the feasible set for problem (19), is convex and strongly closed. Moreover, for any
(T, F))e 2, ®. is strictly convex, coercive and lower semicontinuous (1.s.c.) (Appendix I). As
functional @, is convex, it is also weakly Ls.c. on 2[20,p. 11]. For any given real number
b, define the (level) set

Ey = {(TF))|®{T, F)) < b,(T, F})e 2}.

As @, is convex, coercive and ls.c, and 2 is convex and closed, the set E, is bounded,
convex, closed, and therefore also weakly closed. Moreover, E, is also weakly compact,
because & is reflexive[21]. As a consequence, functional @, is bounded from below and
attains its minimum on the set E,. As ®_ is strictly convex, its point of minimum is
unique[22].

4. THE MINIMUM CONDITIONS

It is worth noting that functional ®(T, F?), eqns (17), is Gateaux differentiable (G-
diff) only in a subset of those points P = (T,F’)e 2 where it takes finite values. In
particular, ®. is not G-diff in the points where T/ = 0 on a set having positive measure for

some j, because
L
'[ (5} ds
¢}

{defs (17c), {17¢) and (17f}} is not G-difl if T = 0 on a set having positive measure. By this
reason, it is impossible to derive the minimum conditions for @, on 2 in conformity with
the usual variational procedure.

A useful remark (Appendix IT) should be premised at this point. Consider the functional

W(T, FO) = J;q;z ds, if o, eL,(w)
0, otherwise

(T, FY)e Ly(w) x R?

which is defined on 2 = T > 0. Then, there exists
SY(P;(P — P)) = ‘llig%%{l//(ﬁ + MP — P)— y(P)}, P Pe?
if

‘36_‘? = #[R,(s) + FO1[R{s) + F{le Ly(w), %eLI(W) (20a,b)

and y is G-diff in P in the direction (P — P). If only eqn (20a) holds, y is G-diff in P only
with respect to T.

Let P = (T, F% be the point of 2 where ®, attains its minimum. Let U be the set
collecting the indices, j, of the cables which are slackened at P in some part of finite extent,
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but not everywhere, as well as the indices of the cables whose traction tends to zero in the
vicinity of a single point. Let 7 > 0 be an integer such that the set

(wyY = {sl Tis) > %} VieU
has positive measure. Then, for any n > 7 the sets

wly = {sl Ti(s) > %} and (W) = {Sl Tis) < %}

have positive measure, and are related as follows
W YuwY =0,L), wYnw)Y=2, Vnzi

The set (w,’Y tends to (w*Y, eqn (15a), for n — c0. The set (w*) coincides with the in
tension parts of the jth cable, or with the whole cable if T is zero only in a set of single
points. Moreover, the set (w®) tends to (w°, eqn (15b), which coincides with the slackened
parts of the jth cable, and its measure is zero if the cable is (almost) everywhere in tension.

The above definitions can be extended to the cables where traction T is away from
zero, or else zero over the whole length. The indices j of such cables are collected in the
sets V and Z, respectively. 7V > 8 > 0 a.e. holds in the first case (je V), and an index A
can be found such that, for n > 4, the set (w,'Y, VjeV, coincides with the whole cable,
while the set (wlY is of zero measure. TV = 0 a.e. holds in the second case (je Z), hence
the set (w2 coincides with the whole cable for each n, while the set (w,} Y is of zero measure.

Consider a point P = (T, F?)e 9. As @ is a convex set, the point:

Pr=(1~)P+iP=P+AP-P), 1e(0,1) (21
belongs to 2, and
O(PY~0(P)=0, 1ie(0,1), VPed (22)

because @, attains its minimum at point P.
Let n* = max{#, #}, then relation (22) can be written, for each n > n*, in the form

ZJ{ Lo - @1(P) + @4(P*) — ox(P)]ds

+ L[%(P‘) — 01(P) + @3(P*) — 9,(F)] GS}

+F(PY) - FP) =0, 1e(0,1), VYPed, Vnzn*
which, as ¢, is a convex function[23], implies

2;{% [0:1(P*) = 0:1(P) + 9o(P*) — 9(P)] ds

+1[ torn - eunas
wi

+ L [@2(P) — @2(P)] ds} +F(P)-F(F)20,

Ae(0,1), VPe2, Vn > n*. (23)
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Since T > (1/n) on w,, the functions (3¢,/éT)|p and 1/T are bounded on w,’, hence

they fulfil conditions (20}. Then, by def. (21) of P*, the limit for 4 — O of the left-hand side
of inequality (23) can be taken, and the following inequality is obtained

£{[,[5,

do, .
+ L [f.}— (T=T+0:P) - soz(P}J ds}

+FP)-—F(P)20, VPe2, Vnzn* {24

093

T

0,
P)(T~ THET?

(F° — F?)} ds
p

The above condition is necessary for the minimum of problem (19). Moreover, it is also
sufficient. Indeed, if the left-hand side of inequality (24) is denoted by g, the following
inequality holds because of the convexity of ¢, and o,

xs Z’{J‘ [o.(P) — (Pl(P) + @2P) ~ (Pz(p)] ds

+ j [01(P) — @1(P) + 95(P) — 95(P)] dS} +F(P)-F(P) (25

and its right-hand side is nonnegative if inequality (24) is satisfied, hence ®(P) = ®(P),
VPe 2.

Observe that the integrals on domains w? and w,, pertaining to the cables of index
JjeV and index je Z, respectively, do not appear in inequality (24). As a consequence, the
minimum condition for problem (19) can be obtained via the usual variational procedure
if all the cables are in tension (je V, w, = (0, L)) at the solution of the problem.

A set of conditions is deduced from inequality (24), which has a transparent mechanical
meaning. For any point Pe £ such that

T'=T, k+#j; Tis=Tis) sew), F'=F

inequality (24) takes the form

L&
(W Y daT

from which, for the arbitrariness of T/ on (w,’)

1 [(R; + PR+ FD)

-5 2 11]+é}(?- Tds=0
T

4G
T

= 0. (26}

1] (R, + FOXR; + F? _
ey ).

As the above condition is true for any n > n*, it can be extended to the set (w*y
defined by (15a). Taking into account (16), condition (26} is recognized as the elastokinematic
condition, egn (8), for T/ > 0.

It follows from condition (26) that the function (9,/dT), evaluated in (T, FPY, is
bounded on (w*Y (see Appendix I1I), then it fulfils condition (20a). As a consequence, the
set of the left-hand sides of condition (26) for the cables of indices je U U V, coincides with
the gradient, with respect to variables T, of the functional @, if the domains of integration
are restricted to the in tension parts only. Otherwise, the same set coincides with the
gradient of @, with respect to T if each cable is slackened at most in a set of single points,
in correspondence of the solution of the problem.
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A number of further conditions can be extracted from inequality (24), in addition to
condition (26), which pertains the in tension parts of the cables only. On this purpose, it
is worth-while to observe that the value of functions (dG/dT) and [Rys) + F?] in (T, F?y
is a.e. zero on (w°). The former function is zero because it represents strain ¢ in terms of
traction, the latter is zero because P is the solution of the problem, hence ®(P) < 0.
Moreover, the function

99,
OF iz poy

= 5RO+ FL sy

is bounded and therefore integrable on (w*Y, as the value of (3p,/8T) in (T, F?Y is bounded
on (w*Y. For any fixed n > n*, the set

(Bwy) = (W\WY) = (w*)\(w,")/

(of zero measure if je VU Z) is defined for the jth cable.
By virtue of condition (26), for any P e 2 inequality (24) takes the form

s e - e

(F? — FOXF? — F?) (1 )]
+J;o[: ‘2,1, +|3+¢)T |ds

N J [(R.- + FOXR; + FY) . (Ri+ FIXR + FY)
Aw,

272 2T

"

T
+ FF)-FFH>0, VPeD, Vnzn* 27

R+ PR+ P (R, : B o _ p?)] ds}

By minimizing the left-hand side of (27) with respect to T one obtains

o LFD — FOXF ~ P32
147

, sew’ (28a)

~1j2
(Ri+ F)YR; + F ?)} , seAw, (28b)

T=[(R;+ F)XR: + F?)]”’{ 77

where 5 denotes the strain n corresponding to & (eqn (5)). Substitution of eqns (28) in (27)
leads to

Z.{(F? - F?)J @‘—}'—Fﬁds + AJ (1 + f)ds

0

+ f :}{E(Re + FO(R, + FOIVA[(R, + FPXR, + FO]12
Aw,

(R + PR + FO) ds} + ) — F(E) 30,

VFle ¥, Vnz=n* (29)
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where A = [(F? — FOXF? — £?)]"2. In this inequality the integrand on Aw, is nonnegative
a.c. and bounded, VF?, Vn = n*. Moreover, the measure of Aw, tends to zero for n — oc.
As a consequence, also the value of the integral on Aw, tends to zero for n — oc. Then the
minimum condition becomes

Z{J &';ﬂ)_)(pf’—ﬁ?)ds-l-/\f (1 +mds

J w0

- ;{X?[z (F? ~ F9)~ T (FP - F?)]} >0 VFeZ (0

jel* jeE*

because condition (29) is fulfilled in P, ¥n > n*.

Note that the end forces F? meet the nodal equilibrium equations (21b), hence
F?e % if and only if

SFP-F)- S (FO—F9=0, k=12..,L (31)

Jjelk JjeE*

If all the cables are in tension (je V) at the solution of the problem, the integral on w° is
not present in inequality (30), moreover w* = (0, L) and (1/T) € L,(0, L). Therefore, the left-
hand side coincides with the Gateaux differential of ®, in P with respect to the variables
F?, and with direction (F? — F?). As a consequence, taking into account eqns (31), the
minimum condition becomes

L
(R, + FY }
F,--—F?d
ZJUO_?_( )ds

- ;{X?[ L(FY = F) = % (F? - F?)J} =0

jer JjeE*

for each (F? — F?) which meets eqn (31), and it expresses the usual, variational stationary
formulation of @, in P with respect to variables F? on .

In order to remove the constraints on the differences (F? — F?), the left-hand sides of
eqns (31) are introduced in inequality (30) after multiplication by the 3/ Lagrangean
multipliers X*. Let (X?Y((X*))) denote the prescribed scalar factor X" or else the unknown
one X*, which pertains to index j if je I" or je I* (j € E* or je E*). Then inequality (30) takes
the form

Z{(F? - F?)[ (R—‘;}io)ds + XL~ x?] + Af 1+ ﬁ)ds} >0, VF°®

0
and letting

AR) = — —F (Lo)j=j (1 +7)ds
( ) '[w*)l (wOy

it becomes

) {(F? — F)X—A% + XP - X)) + AL°} 20, VF. (32)
4
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Inequality (32) is met for arbitrary values of F?, if each term of the summation on the
right-hand side is nonnegative for any (F?)/ # (FP, i.e. A/ # 0. If the term pertaining the
jth cable is minimized with respect to F?, one obtains

(X - X2 - A%)

N — (FOV _
(FEY = FY — N T X7~ aaXE — X0~ 5]

By using the above expression of (F?)/, inequality (32) becomes

2 A{L® = [(XF = X7 — ARYXT — X? - 8%)]'?} 2 0
J

and arbitrariness of A(>0) implies for each cable
L® 2 [(XF ~ X — A%)XT — X7 — A%)]'? (33)

provided that L° = 0 (A%; = 0) if the jth cable is a.e. in tension (slackened) at the solution
of the problem.

Inequality (33) can be immediately interpreted. Taking into account eqn (16), A%,
coincides with the sum of the distances, in the ith direction, between the ends of the in
tension parts of the cables (se(w*)/). On the other hand, L° is the sum of the extents of
the slackened parts (se (w®)), strain 5 being accounted. Note that L° = 0 and w* = (0, L)
if the cable is a.e. in tension. As a consequence, Ax; is the distance between the ends of the
cable in the ith direction. In this case, inequality (33) implies merely

A% = X} - X, (34)

Equation (34) shows that the Lagrangean multipliers X in their specifications X? and/or
X*, have the meaning of coordinates in the reference system (0, x;). Moreover, eqn (34)
attaches to each in tension cable a couple of points, and the distance between these points
is equal to the distance AX; between the ends of the cable, in the directions of the axes.
Thus the Lagrangean multipliers X* are the coordinates of the free nodes connected by
the jth cable.

On the other hand, X?(X¥) assumes the same value X* or else X% for all the cables
whose initial (terminal) end is connected to the restrained node h, or to the free node k.
Therefore, continuity of cables in the node is assured. Moreover, X? and XF, for any in
tension cable, are univocally defined if at least one end of the cable is connected to a
restrained node, directly or by a sequence of in tension cables. Otherwise, X?, X% are
determined apart from an arbitrary constant (the same for X?, X¥), corresponding to a
rigid body translation in the direction of the axes, which leaves the traction along the cable
unaffected.

If slackened parts are present on a cable (L° > 0), inequality (33) shows that the
difference between the vector of components (X* — X?) and the one of components AX;,
is a vector of modulus less than L% which is the sum of the lengths of the slackened parts.
In this case, inequality (33) cannot, by itself, define the coordinates of one end of the cable,
once the coordinates of the other end are fixed. In other words, the position of each end
of the cable can be defined only if this end is connected to a restrained node, directly or
through a sequence of in tension cables. Finally, for a (a.e.) slackened cable (A%; = 0},
inequality (33) takes the form

L% 2 [(XF — X(XF — X0)]'?
which means, as natural, that the length of an unstressed cable cannot be less than the

distance between the nodes connected by it.
As a consequence, eqn (33} expresses the boundary compatibility conditions for the
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cable in the present context.

Conditions (26) and (33) have been proved to be necessary for fulfilling inequality (24),
but they are also sufficient. Indeed, let condition (33) be true for each cable. Then inequality
(32) is fulfilled for each F?, and inequality (30) is fulfilled too, as inequality (32) coincides
with inequality (30) for each F{e.%. Thus, also inequality (29) is fulfilled, as the integral
on Aw, is nonnegative for each n. This inequality is obtained by minimizing the left-hand
side of inequality (27) on the set of the admissible T’s, for any given FPe ¥. As a
consequence, if inequality (29) is true for any F{ € &, also inequality (27) is true for each
Pe 2, and inequality (24) (remember condition (26)) is fulfilled. Hence conditions (26) and
(33) are sufficient for the minimum of ¢ on Z.

5. APPLICATIONS AND CONCLUDING REMARKS

The exposed theory is applied to the solution of some sample problems. A single cable
is considered, strains are assumed negligible. The actual traction T* = T(1 + n) is related
to the relative elongation 1., = n — # through the relationship

T* = EAn,, = EA(n — 1)

E being the elastic modulus of the cable, 4 its cross-sectional area. The strain energy
density function reads

2

G(T) ::—;—(1 + EQEAT_ 7 with &= ﬁ(} -+ g.)

Lagrangean traction T is represented, according to the usual finite element technique, as
a piecewise constant (one stress parameter per element) or linear (two stress parameters
per element) function of the abscissa s. The a priori transitional equilibrium conditions at
the interelement should be imposed on the actual traction T* for obtaining a really stress-
diffusive (equilibrium) model. Therefore, componentwise continuity on terminal forces F,
must be kept in the assembling process between consecutive elements at their common
node, if no lumped load acts on the node. More generally, equilibrium among the terminal
forces and the acting load should be enforced a priori at a node. From a geometrical
standpoint, this condition implies continuity of the tangent to the cable at a node for any
possible configuration C, if the external load on the node is zero.

The loading schemes considered allow one to anticipate that the cable will be all in
tension at the equilibrium configuration. As a consequence, functional (17) is differentiable
at the solution. After discretization of the interval 0 < s < L, and algebrization of the
functional, this one becomes a non-linear, convex function of the stress parameters, and it
can be differentiated at its minimum point. The gradient of this function is set equal to
zero, and a system of non-linear equations is obtained. This system is solved for stress
parameters, and evaluation of tractions as well as displacements, by integrating eqn (16),
is then possible.

Figure 1 depicts a problem considered by Ozdemir[15] and Jayaraman and Knud-
son[16].

The unstrained length L, of the cable in this problem is less than the distance between
the supports, hence the cable is pre-tensioned. An exact solution is available[13]. Tables
1 and 2 collect the values of restraint reaction F?2 (i.e. the horizontal component of traction
T*), and deflection f at the midspan. In the author’s approach, the cable has been
subdivided into elements of the same length, with T, respectively, constant {constant stress
element, CSE), and linear (LSE). NV is the number of stress parameters for the whole
assembly, in addition to the two reaction components at the initial end of the cable. Note
that Knudson and Odzemir give no result for tractions.
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Table 1. Distributed load w, = —0.021bin"", L, = 9990.0099in

NV F? (CSE) F? (LSE) f (CSE) S/ (LSE)
b Ib in in
1 —~1899.13 —-131.518
2 —1899.13 —1899.13 —131.518 —131.518
4 —1898.99 ~1898.94  —131.495 -131.490
6 —1898.96 —1898.93 -131.493 —~131.492
8 —189894  —1898.93 —131.492 —131.491
16 —1898.93 —1898.93 —131492 -131.491
Exact solution —1898.93 —131.491
Knudson - —-131.63
Ozdemir — —131.60

Table 2. Distributed load w, = —0.181bin"!, L, = 9990.0099 in

NV F? (CSE) F¢ (LSE) J (CSE) f (LSE)
Ib Ib in in
1 —6053.48 —-371.315
2 —6053.48 —-6053.48 —-371.315 -371.315
4 —6047.78 —6045.90 —-371.158 -371.105
6 —6046.49 —6045.49 —-371.144  -371.139
8 —6045.02 ~6045.43 —-371.140 -371.134
10 —6045.79 —6045.41 -371.139 -371.137
12 —6045.67 —604540 —371.138 -371.136
24 —6045.47 —604540  —371.137 —-371.136
Exact solution —6045.40 —-371.136
Knudson — -371.13
Ozdemir — —368.00

As the problem is symmetric, the descriptions accomplished with one or two elements
CSE (NV = 1,2), as well as one element LSE (NV = 2), for the whole cable, lead to the
same results. Note the results obtained with the present approach with one element CSE
(1 + 2 variables) only, or else with two elements LSE (4 + 2 variables). It is worth observing
that an increase in the intensity of the load causes less accurate results, the number of
clements being the same. This fact can be explained by noting that the higher the load,
the higher the traction change along the cable.

The case of the same cable, but with unstrained length L larger than the distance
between the supports, has also been analyzed, see Table 3. Convergence seems slower than
in the previous example, but by no means less satisfactory.

In spite of their simplicity, the examples exposed lead one to believe that quite good
results are achievable by the proposed approach with a very moderate effort.
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di

Table 3. Distributed load w; = —0.181bin™", Ly = 11000.0in

NV Fo(CSE) FO (LSE) J (CSE) S {LSE)
tb 1b in in

] —1239.80 —-1996.29

2 - 1239.80 —~1239.80 -1996.29 - 1996.29

4 —1189.87 - 1174.74 —2006.64 ~2008.21

6 -~ 1179.89 -1172.29 —2010.75 - 2015.06

8 ~1176.29 —~1172.00 —2012.41 -~ 2014.29
10 —~1174.60 -1171.67 —-2013.22 -2014.77
12 -1173.68 - 117162 —2013.67 —2014.64
14 —-1173.12 —-1171.60 —2013.95 - 2014.74
16 —-1172.76 —1171.59 -2014.13 - 2014.70
18 -1172.5} —~1171.58 —2014.25 -2014.73
20 - 1172.33 —1171.57 ~2014.34 - 201471
30 ~1171.91 —1171.57 —2014.55 -~ 201472

Exact solution —~1171.57 —2014.72

Finally, it should be remarked that in passing from a plane problem to a three-
mensional one with the same discretization, only one variable should be added for the

whole cable: the third component of reaction at the initial end of the cable. Such a
peculiarity could lead, by itself, one to consider favourably the proposed approach.
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APPENDIX |

Let

OTF) =D, + D, + Dy + F
where

L

L
o, =sz G(T)ds, °‘=Z;,[, %(R‘+F?)(R4+F?)ds

O3=ZJJ:T<%+€)ds

# = -2;{ Z (F) - T ReL) + F°)]}

re

Then functional @, is

(a) strictly convex,
(b) coercive,
(c) lower semicontinuous (lsc)on =¥ n¥, P c .

(a) & is a linear manifold in &, hence convexity of ®(T, F?) on % implies convexity on 2 for ..

Note that @, is strictly convex with regard to T, as G is strictly convex. Moreover, ®, and # are weakly
convex (linear) with respect to T and FP, respectively.

Consider now the points P = (T, F°) and P = (T, F?), P, Pe w". Then @, is convex on ¥  because inequality

OAP + (1 — HP) < ADy(B) + (1 — AD,(P),  ie(0,1) (A1)

is fulfilled. Indeed, the integrand in @, (see defs (17¢), (l7e) and (17f) of function ¢,) is a convex function{23].
As @, is strictly convex with respect to T, ®(T, F?) is strictly convex if inequality (A1) is strictly fulfilled for
T=T Assume T= T= T > 0, then inequality (A1) becomes

L
in -z)z,j‘ [F?”F?]T[F?’F?stzo, Ae(0,1)
0

and is strictly fulfilled if F? # F?, T2 0.
(b) Let u be an elemcnt of the set 2 c &, then O(T, F?) is coercive if

1 lx'nT Olu) =

and this is true if

Olu) _
teli~w ful (A2)
As @, and # are respectively a linear functional and a linear function, condition (A2) is fulfilled if

lim 0\(“) + 0Z.(u)

Nali =~ flul = @ (A3)

Let @} and @} be the jth contributions to ®, and ®,. ®| and ®} depend on vector v = {T/|(F%)},
ve L,(0, L’) xR, T/ 20, ol = {ITN? + HFH2}YL, @, 20 and @} 20, Vu. It can be easily provcd that
condition {A3) is fulfilled if

. Ol) + ) _ .
N R (a4

Note that de/dT = d2G/dT? > « > 0 (eqn (7d)), hence

72
o = Gmdsaff T3ds =< | T)%
L] 2 (] 2

Consider the sequence {v,} = {T,, (F?).}:li,r'nllv.ll =c0. As flo,] < UTll + ((FP),H, it results lim | T,) = o
and/or lim |I(F 9.l = c0.
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The subsequent cases are possible:

i g0y
MEDE H < x, as a consequence lim || T

(iYlim o) = i
[T . . . )](FO ..\l ; w EOy i e
{1} lim el = % and li I.‘ T = oC, as a conseguence h{n HEFD L = o,

Case (i). The continuous inequality holds

Gt O i x T _ax ITI_,
el T Tod 2l T 2T WET T2 I
T

Because of lim ¢, = o, condition (A4} is met.
< a, < sup (T0s), s€(0, L),

Case (it). Consider the sequence {T,}. For the mean value theorem, 3 a,, inf(T,

such that
iN
a,L = J T,ds.

0

(of positive measure), and z, = {s]| T,{s) > B,} (of

Fora fixed A > 1, B, = Aa,, let the sets w, = {s| T;(s) € 8,}
possibly zero measure). The measure of () is denoted by u(-). Inequality

'L

Bz, <J T.ds SJ T,ds = a,L
(1]

%a

holds. As u{w,} + plz,) = L, it is also B{L ~ g{w,)} < a,L, and consequently u(w,} > L{I — 1/A), Yn. Observe that

L
L™YT), = L"J [Tids < L7V3T,)
4]

hence

L
j T.ds < LY
0

because of T, = 0, and finally
a, S LTV T and B, <ALT'YTA.

As a consequence, the following inequality holds

e B S J"[R‘-+(F?),J{R,»+(F?).st
T Tl el T,
1
. R, + (F9,1[R; + (F?),]d
nTu+uF°)n/3”[ + (FORLR: + (RO, ) ds

L!tl
R, + (FO,IIR, + (F9,Jd
AT + 1O j- [R + (FOWI LR, + (Fi)Jds

L2 WD, J’ [R.-+(F?).][R.-+<F?).] ds
BN AR CAY TR ATCY | TN

_LPHEDE 1 f[R.-+(F?).}[Ri+w?),]dsgw_
CA T U WE JL IED )

IFEDL

Observe that the functions R{s} are bounded on (0, L}, and h:n HF%, | = <, hence

lim j ()ds = p(w,) > L1 — 1/A).

Wa
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As li m—rr— WD = oo implies limﬂ =0, limy, = oc follows, and condition (A4) is met.
1T ~CEDLN "

(c) Observe that 9, and F are linear and continuous with respect to T and F?, respectively. By this fact,
&, is Ls.c. if also ¢ = ®, + ®, is so. Moreover, the integrands in ®, and ®, take non-negative values for cach
(T, F?)e D. Let, for a fixed real number k, be the set

w, = {(TF)WT, F)) < k(T F)e 2}

where y is Ls.c. if w, is strongly closed[20, pp. 9, 10], i.e. if any convergent sequence {T,,(F’),} in w, converges
in the norm of & to an element of w,.

Consider a sequence {T,, (F?),} and let lim {T.(F)),} = (T, FD).
Then, there exists a subsequence {7, ,(F, °),,} of the above sequence, which converges to (7, F°) a.e., and

viT, J(F? )a) < k, because this subsequence belongs to w,. On the other hand, Fatou’s lemma[24] gives
Ylim {T,,(F),}] = [T F7] < liminfy[{T, .(F)),}] < k
as a consequence (7, F{)ew,, and ¢ is Ls.c.

APPENDIX II

Let 6y(P; 1, f;) the Gateaux differential of the functional Y(T, F?), (T, F%)e Ly(w) x R? in the point P = (7,
F?), with direction (1, f}). The direction (¢, f) is admissible if V/(T+ At, F® + Af) is defined for sufficiently small
values of 4 2 0. The Gateaux differential in the point

P={TF)|T>0ae, o)T FeL (W)

e b (R; + FOXR, +F°) A, (R, + F?)
bUP:Lf) Ali'?j{ P YRR Y AR 2T f}d

= lim J. w(4)ds. (AS5)
A=0 -

As (1, f) is an admissible direction, there exists a T such that (T + if) 2 0, VA:0 < 4 < 7, hence the inequality
{T'+ i) 2 T/2 holds for any 4 such that 0 € 4 < 7/2. Let 2* = min{1, 7/2}, then the following inequalities:

o< | Rt FOXR+ F) | 1. i, R, + £9)
)] < ZT_T+ At) e AT+ i) + T+ lt‘) S
(R + FXR, + D) (Ri + F))
s '_—'—'—'-T—z——"_l + 2—7—-];

7] 0
= 2[ P2 [ "”lfl Bl + gl + Il
hold for any Ae(0, A*).

Observe that [d¢,/3T]p€ L,(w) implies [d¢,/0F?]p€ L,(w). Indeed

20, [20: 1V _ [20:] [0

[azsl i) -] 5]
an
aF?

90, | | de, ! -
+{[5F? [5F? o k=h23
and consequently [d¢,/0F]s€ L (w).

Observe that the functions |x,l,[x.] and [x,| belong to L,(w) if conditions

moreover

(1) [%]PGLZ(W), (2) %eL,(w)

SAS 23:5-B
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hold, as te L,(w). Then |w(4)] is dominated by a function belonging to L, for each 1e(0, A*). Hence the limit

exists and takes the form
T | Ko | 9¢,
SY(P;t, f) —<[6Tl,t>+ f,-j aF?:LdS

and Y(T, F) is Gateaux differentiable in P.
If condition (2) is not fulfilled, there exists only d¥(P;t,0), and y is differentiable only with respect to T-

APPENDIX IIi

Equation (26) implies that dG/dT}; is bounded on (w,:) for n = n*, because the functions R; and £ are
bounded on (0, L), T(s) > 1/n*, se(w,). Let a = sup(dG/dT]s) on (w.s), let § = sup(&) on (0, L), and observe that
dG/dT is a strictly increasing function of T. Then it follows that dG/dT|; < a on (w}), Yo > n*, and eqgn (26}
implies

| -
+s+Eé<a+f+

(R, + FOXR, + F?) _ _[awz} _dG
T80 + 2

1
2 T2 OT ppo dT

B —

on (w,"), ¥n > n*. As the function (—[0¢,/8T]¢.s0) is nonnegative and bounded from above independently of n.
this function belongs to L (w*).



